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ABSTRACT

Alteration minerals associated with porphyry copper deposits have absorption 
features in the visible through shortwave infrared (VIS-SWIR, 0.4-2.5µm) and/or the 
long-wave infrared (7.5-13.5 µm). Regional mineral exploration can be conducted using 
the NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (AS-
TER) sensor to develop prospects. Potential targets can then be further refined using 
hyperspectral sensors such as the commercial Hyperspectral Mapper (HyMap) and the 
Spatially Enhanced Broadband Array Spectrograph System (SEBASS). Mineral map-
ping, with these hyperspectral sensors focused on the minerals associated with the de-
posit model, allows for rapid characterization of the surface geology that would require 
many man-years if done by traditional mapping.

ASTER is a multispectral satellite sensor that measures the reflectance and emis-
sion of materials in the visible and short-wave infrared (VIS-SWIR) parts of the elec-
tromagnetic spectrum. SEBASS is a hyperspectral sensor that can measure mineral 
absorption features in the mid-wave infrared (2.5-5.3 µm) and the long-wave infrared 
(7.5-13.5 µm). HyMap is a hyperspectral sensor that can measure mineral absorption 
features in the VIS-SWIR (0.45-2.5 µm) part of the spectrum. In 1999 SEBASS and 
HyMap data were collected over Yerington, Nevada, and an ASTER scene was collected 
in 2001.

Logical operators were used to process the ASTER data for alteration minerals as-
sociated with porphyry copper deposits. Mineral maps were produced using a spectral 
feature algorithm with publicly available libraries containing the spectral signatures of 
minerals considered in our porphyry copper deposit model. These mineral maps can be 
integrated into an exploration database and combined with other geophysical data to 
refine prospect development. This study shows that regional and prospect exploration 
can benefit from using satellite and airborne multispectral and hyperspectral sensors 
processed in accordance with a deposit model.
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INTRODUCTION

Regional porphyry copper exploration projects com-
monly use spaceborne multispectral sensors such as Landsat 
and the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER). The second-generation Landsat 
satellites are capable of identifying spectral anomalies that 
may be associated with mineral alteration. ASTER with nine 
visible and near-infrared (VNIR) through short-wave infra-
red (SWIR) and five long-wave infrared (LWIR) bands are a 
dramatic improvement over Landsat for regional exploration. 
The improvement provided by ASTER data comes from an 
increase in the number of bands and, more importantly, from 
use of SWIR bands that were specifically chosen to empha-
size minerals with absorption features in the SWIR spectral 
range.

Commercially available VNIR-SWIR hyperspectral 
sensors, such as HyMap and ProSpecTIR, can identify spe-
cific mineralogy through inversion image-processing meth-
ods. Hyperspectral sensors are defined by the large number 
(in the range of hundreds) of spectral bands. Mid-wave in-
frared (MWIR) and long-wave infrared (LWIR) hyperspectral 
sensors such as SEBASS can identify specific minerals using 
inversion methods similar to those used in the VNIR-SWIR 
spectrum. These high signal-to-noise ratio (SNR) sensors are 
capable of mapping changes in mineral chemistry along with 
identifying the same and different minerals.

Porphyry copper deposits commonly produce zoned as-
semblages of alteration minerals as described by Lowell and 
Guilbert (1970) and shown in Figure 1 of this report. The uti-
lization of ground and airborne spectroscopy for a variety of 
geological applications, including mineral exploration and 
mine development, is possible because spectral absorption 
features are present in rock-forming and alteration minerals. 
These absorption features occur in the visible and near infra-
red (VNIR, 0.4-1.1 µm), short-wave infrared (SWIR, 1.1-2.5 
µm), and the long-wave infrared (LWIR, 8.0-14.0 µm) por-
tions of the electromagnetic spectrum (Abrams and others, 
1983; Spatz and Wilson, 1995). Airborne hyperspectral sen-
sors can remotely map these minerals using their associated 
spectral absorption features, producing mineral maps that can 
be evaluated alone or integrated into a geographic information 
system (GIS).

Identifying specific minerals in areas of interest is im-
portant for exploration, environmental impact statements, 
environmental health concerns, ore grading and metallurgi-
cal processing, and geotechnical mine-site planning. In ex-
ploration, hyperspectral sensors can assist in lithological and 
alteration mapping by covering many areas where the field 
geologist cannot cover and by helping to map mineralogical 
characteristics used in exploration. A hyperspectral data set, 
used to document the natural conditions of the ground prior 
to mine operations, will be useful for mine reclamation. Other 
uses of these data may include an initial mineral assessment 
focused on naturally occurring minerals that may have human 

health effects. Commercially available, non-imaging field 
spectrometers, such as the Portable Infrared Mineral Analyser 
(PIMA) or the Terraspec, have been used in exploration to 
assist alteration mapping, and this same technology can po-
tentially assist the mine-site geologist in rapid ore-grade as-
sessments.

GEOLOGY OF THE AREA

The altered rocks of the porphyry and skarn deposits in 
Yerington, Nevada are well exposed and have been mapped in 
extensive detail. Moreover, the rocks have been tilted almost 
90°, exposing propylitic, argillic, phyllic, and potassic altera-
tion zones that are related to the porphyry copper deposit, and 
the hydrothermal fluid paths to the associated skarn deposits 
have been mapped (Dilles and Proffett, 2000, and Einaudi, 
2000). Early multispectral and hyperspectral sensing studies 
(Windeler and Lyon, 1991; Cudahy and others, 2000; Cudahy 
and others, 2001, Cudahy and others, 2001) combined with 
the detailed mapping of the hydrothermal alteration and li-
thology (Dilles and Einaudi, 1992; Proffett and Dilles, 1984, 
Einaudi, 2000; Fig. 2) demonstrate the utility of mineral map-
ping with multispectral satellite and airborne hyperspectral 
instruments.

MINERAL SIGNATURES

Propylitic alteration

Minerals associated with propylitic alteration in por-
phyry copper deposits are commonly chlorite, epidote, and 
calcite at shallow depths of emplacement; sericite (muscovite, 
paragonite, illite), albite, actinolite, and magnetite commonly 
are found at deeper levels of emplacement (Fig. 1). These 
minerals have different absorption features in the SWIR and 
the LWIR, and the primary absorption features for chlorite, 

Figure 1. Alteration minerals and zone of porphyry copper deposits 
modified from Figure 3 of Lowell and Guilbert (1970).
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Figure 3. VIS–SWIR (0.4-2.5 µm) 
and LWIR (7.5-13.5 µm) spectral 
signatures of minerals. The min-
eral signatures are from the USGS 
spectral signature library. The 
minerals chosen coincide with the 
minerals from the modified altera-
tion zone diagram (Figure 1).

epidote, and carbonate overlap in the SWIR (Fig. 3).
Chlorite has three absorption features in the SWIR, with 

the deepest feature at 2.3250 μm and two shallower features at 
2.2450 and 2.3860 μm (Fig. 3A). Epidote has two absorption 
features in the SWIR at 2.3350 and 2.2550 μm. Calcite has an 
absorption feature in the SWIR at 2.3350 μm. Albite does not 
have any significant absorption features in the SWIR part of 
the spectrum. Actinolite has four SWIR absorption features, 
which are, in declining magnitude:  2.3050, 2.3860, 1.0335, 
and 1.3935 μm (Fig. 3A). 

 Propylitic minerals such as chlorite, epidote, calcite, and 

albite all have different absorption features in the LWIR (Fig. 
3B). Chlorite has a deep absorption feature at 9.75 μm and two 
shallower absorption features at 9.35 and 10.4 μm. Absorption 
features for epidote are at 8.9, 9.4, 10.4, and 11.25 μm. Calcite 
has a single absorption feature at 11.3 μm. Principal absorp-
tion features of albite are 8.7, 9.2, 9.6, and 9.9 μm (Fig. 3B).

Argillic alteration

Quartz, kaolinite, alunite, and chlorite are minerals as-
sociated with argillic alteration (Fig. 1). Other minerals such 
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as montmorillonite, diaspore, porphyllite, and dickite are 
commonly associated with argillic alteration. This paper will 
focus on the alteration-zone indicator minerals in Fig. 1 as 
example mineralogy and is not meant to be all inclusive. 

Quartz does not have any absorption features in the 
VNIR-SWIR (Fig. 3A). Kaolinite has a four absorption 
features (Fig. 3A) forming two doublets at 1.4 (1.3935 and 
1.4135) and 2.2 (2.1650 and 2.2050) μm. Alunite has three 
absorption features, one doublet at 1.4 (1.4285 and 1.4785) 
μm and a single absorption feature at 2.165 μm. The absorp-
tion features of chlorite (Fig. 3A) were discussed previously 
in the propylitic alteration section.

The LWIR spectral signature of quartz has a doublet ab-
sorption feature with a peak centered at 8.65 μm. Alunite has 
an absorption feature at 8.9 μm. Chlorite, montmorillonite, 
and kaolinite are argillic hydrothermal alteration minerals and 
have different LWIR signatures (Fig. 3B); the spectral signa-
ture of montmorillonite is not shown in Figure 3. Na-mont-
morillonite has the primary absorption feature at 9.4 μm with 
a secondary feature at 8.8 μm. A broad absorption feature at 
9.5 μm is representative of Ca-montmorillonite. Kaolinite has 
four absorption features (8.9 μm, 9.6 μm, 9.9 μm, and 11.0 
μm) with the 9.6 μm and 11.0 μm features being the most 
significant. The absorption features of chlorite do not overlap 
those of kaolinite or alunite in the SWIR. The absorption fea-
tures of chlorite are described above.

Phyllic alteration

Phyllic alteration commonly contains quartz, muscovite 
(sericite), and pyrite (Fig. 1); the VIS-SWIR and LWIR sig-
natures of those minerals are shown in Figure 3. The spectral 
signature of quartz in the VIS-SWIR spectral range is flat, 
lacking absorption features. The muscovite spectrum has four 
absorption features in VIS-SWIR and can be distinguished 
from that of kaolinite because it does not form a doublet at 2.2 
µm. The four SWIR absorption features of muscovite are at 
2.2050, 2.3450, 2.440, and 1.4135 µm. Illite has three absorp-
tion features, 2.2150, 2.3460, and 1.4085 µm (Fig. 3A). 

Muscovite and quartz both have spectral absorption fea-
tures in the LWIR. Quartz has a unique doublet centered at 8.6 
μm with the minima at 8.5 and 8.9 μm and a second doublet at 
12.6 μm with minima at 12.5 and 12.8 μm. Muscovite has two 
absorption features at 9.25 and 9.4 μm (Fig. 3B). 

Potassic alteration

Minerals typically associated with potassic alteration are 
potassium feldspar, biotite, quartz, muscovite, and anhydrite 
(Fig. 1). These minerals all have LWIR absorption features, 
and differentiating the types of potassium feldspar is impor-
tant for understanding the temperature of formation and for 
distinguishing between potassium feldspar alteration and the 
host-rock mineralogy. Biotite and muscovite have absorption 
features in the SWIR, and quartz and muscovite signatures 

were discussed above in the phyllic alteration section. 
Adularia, microcline, and orthoclase do not have any 

absorption features in the VIS-SWIR (Fig. 3). Any potassium 
feldspar signature with a 2.2 µm feature indicates alteration 
of potassium feldspar to muscovite (Clark and others, 2007). 
Biotite has three absorption features: one broad absorption 
feature related to Fe at 1.20 µm and two other absorption fea-
tures at 2.3350 and 2.4050 µm. Anhydrite does not have an 
absorption feature in the VIS-SWIR (Fig. 3A).

Anhydrite has a broad absorption feature between 8.3-8.5 
μm region of the LWIR spectrum. Orthoclase has two absorp-
tion features at 8.5 μm and 9.5 μm (Fig. 3B). Microcline has 
numerous absorption features, but the key absorption features 
are at 9.5 and 8.6 μm. Adularia has two absorption features, 
8.7 and 9.5 μm. These minerals show a shift in the minima of 
absorption features of adularia (8.7 μm), microcline (8.6 μm) 
and orthoclase (8.5 μm). These spectral-absorption features at 
wavelengths shorter than 9.0 μm may indicate the temperature 
of formation, because each of these potassium feldspars has a 
consistent absorption feature at 9.5 μm. Biotite has an absorp-
tion feature with the minimum centered at 9.8 μm (Fig. 3B).

MULTISPECTRAL  AND  HYPERSPECTRAL 
SENSORS

ASTER.  The Advanced Spaceborne Thermal Emission 
and Reflectance Radiometer (ASTER) measures reflected 
radiation in three bands in the 0.52–0.86 µm wavelength re-
gion (VNIR), six bands in the 1.6–2.43 µm wavelength region 
(SWIR), and five bands of emitted radiation in the 8.125–
11.65 µm wavelength region (TIR) (Fujisada, 1995). The AS-
TER system consists of three separate sensors in the VNIR, 
SWIR, and TIR spectral regions and have ground-sample-dis-
tance (GSD) resolutions of 15 m, 30 m, and 90 m, respectively 
(Fujisada, 1995). ASTER also has a backward-looking VNIR 
telescope with 15 m resolution for stereoscopic VNIR image 
acquisition. 

HyMap.  HyMap is an airborne hyperspectral imag-
ing spectrometer with 128 channels across three wavelength 
regions in the VNIR-SWIR spectrum (0.45–2.5 µm). From 
0.45–1.4 µm there are 64 channels, 1.4-1.9 µm there are 32 
channels, and from 1.9-2.5 µm channels there are 32 channels 
with bandwidths of 15-17 nm. This sensor has a 2.0 millira-
dian instantaneous field of view (2 mrad IFOV) and is capable 
of a 61.3° swath width producing imagery with 3-10 m GSD. 
The sensor has on-board radiometric and spectral calibration 
with SNR greater than 500:1 (Cocks and others, 1998).

SEBASS.  The Spatially Enhanced Broadband Array 
Spectrograph System (SEBASS) measures reflected and emit-
ted radiation in the 2.5-5.3 µm wavelength region with 128 
bands and emitted radiation in the 7.5-13.5 µm wavelength 
region, also with 128 bands. The instrument has a 1.1-mrad 
IFOV per pixel and a 7.8° swath width. This sensor is com-
monly flown at 2,000 m above ground level (AGL) producing 
a 2-m resolution, but can be flown at lower or higher alti-
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tudes. The signal-to-noise resolution has been tested at more 
than 2,000:1 with greater area coverage (Hackwell and others, 
1996).

METHODS

Calibration of ASTER data

A cloud-free Level_1B radiance at the sensor dataset 
(byte data) acquired on May 22, 2005 was downloaded from 
the Eros Data Center. A Level 2 Moderate Resolution Imaging 
Spectroradiometer (MODIS) Total Precipitable Water (MOD_
05) water vapor image acquired at the same time of ASTER 
acquisition was downloaded from L1 and Atmospheres Ar-
chive and Distribution System (LAADS). A crosstalk-correc-
tion algorithm (Iwasaki and Tonooka, 2005) was applied to 
the ASTER radiance-byte data to remove crosstalk from the 
ASTER SWIR data. The ASTER SWIR data were resampled 
to 15-m resolution and combined with the ASTER VNIR data 
to produce a 9-band, 15-m-resolution, radiance-byte dataset.  
Radiance coefficients, which convert the byte to integer data, 
were applied to the ASTER radiance-byte data. Radiance cor-
rection factors (Biggar and others, 2005) were then applied to 
the ASTER radiance-integer data.  The ASTER radiance-inte-
ger data were converted to reflectance using ACORN atmo-
spheric correction software (ACORN, 2005). A MODIS water 
vapor average value for the ASTER coverage was obtained 
from the MOD_05 water vapor data and used in the atmo-
spheric correction program to remove water vapor. 

Calibration of HyMap data

HyMap data for the Yerington district were acquired in 
September 2000 under clear-sky conditions. These three flight 
lines are approximately 2.5 km wide with a 5-m GSD. A dark-
current subtraction had been applied to the data followed by 
generation of suitable calibration factors to convert the digital 
numbers to radiance at the sensor. After this calibration to ra-
diance at the sensor, the data were atmospherically corrected 
to at surface reflectance using ACORN (2005) radiative-trans-
fer-correction software.

Calibration of SEBASS data

Under clear sky conditions, SEBASS data were collected 
for the Yerington district in September 1999. These data were 
calibrated to at-sensor radiance following the steps outlined 
in Hackwell and others (1996). Atmospheric compensation of 
these data was accomplished using an In Scene Atmospheric 
Correction (ISAC) algorithm (Young and others, 2002) and 
converted to apparent emissivity using a temperature emis-
sivity normalization algorithm in ENVI image-processing 
software. The LWIR data were reduced from 128 bands to 
85 bands corresponding to the 8.0–12.0 µm region prior to 
analysis.

Spectral mapping methods

A set of logical operators written in IDL were used to 
map argillic- and phyllic-altered rocks.  Logical operators use 
a series of band ratios and thresholds to map a specific spectral 
shape. Each logical operator determines a true or false value 
for each ratio by comparing the band ratio to a predetermined 
range of threshold values. All of the ratios in the algorithm 
have to be true in order for a value of 1 to be assigned as a 
byte image, otherwise a 0 value is produced. Thus, a byte im-
age with pixel values of 0 or 1 is produced for each algorithm. 
Multiple ratios and band thresholds can be applied to a scene 
using one algorithm, thus, eliminating the separate production 
and application of vegetation and dark-pixel masks. Logical 
operators have been used successfully to map regional altera-
tion (Mars and Rowan, 2006).

Argillic band ratio logical operator algorithm

The first part of the argillic band ratio logical operator 
(ABRLO) algorithm performs a band 3/2 ratio to mask out 
green vegetation (equation A). A spectral analysis of image 
and library spectra suggests that band 3/2 ratio threshold val-
ues of 1.55 and less typically constitute areas that lack green 
vegetation. The ratio does not mask out dead vegetation, 
which has 2.17 and 2.33 µm absorption features.

The ABRLO algorithm performs a threshold of band 
4 to mask out pixels with low reflectance that contain noise 
(equation A). Spectral analysis of ASTER image spectra and 
resampled ASTER laboratory spectra showed that band ratios 
4/6, 5/6, and 6/7 were needed to map the 2.17 and 2.2 µm 
absorption features, thereby delineating argillic-altered rocks. 
Band ratios 5/6 and 4/6 map the 2.165 and 2.2 µm absorption 
features, respectively (equation A). Spectral analysis of AS-
TER data indicates that the reflectance value of band 5 must 
be at least 8.9 percent lower than that of band 6 in order to 
be classified as an argillic-altered rock; thus, the 5/6 band ra-
tio differentiates argillic-altered from phyllic-altered rocks by 
classifying ratio values of 1.089 and less as argillic alteration 
(equation A). ASTER spectra of argillic-altered rocks also il-
lustrate that band 4 is at least 37 percent greater than band 6, 
and band 7 is 3 percent greater than band 6. Thus, values in the 
ABRLO algorithm for band ratios 4/6 and 7/6 must be greater 
than 1.37, and greater than or equal to 0.02, respectively, to 
classify a pixel as argillic alteration (equation A).

Equation A:  ((((float(b3)/b2)le1.55)and(b4gt3250)and 
((float(b4)/b6)gt1.37)and((float(b5)/b6)le1.089)and((float(b7
)/b6)ge1.02)))

Phyllic band ratio logical operator algorithm

The phyllic band ratio logical operator (PBRLO) al-
gorithm is almost identical to the ABRLO algorithm. The 
PBRLO algorithm uses the same methods to mask green 
vegetation and pixels with low reflectance. ASTER spectra 
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of phyllic-altered rocks show that band 5 is at least 8.9 per-
cent greater than band 6, which is expressed in the PBRLO 
algorithm as classifying all 5/6 band ratio values greater than 
1.089 as phyllic-altered rocks (equation B).

ASTER spectra also indicate that band 6 is at least 37 
percent lower than band 4, and band 7 is at least 2 percent 
greater than band 6 (equation b). Thus, values in the PBRLO 
algorithm for band ratios 4/6 and 7/6 must be greater than 
1.37, and greater than or equal to 0.02, respectively, in order 
to classify a pixel as phyllic alteration (equation b).

Equation B: ((((float(b3)/b2)le1.55)and(b4gt3250)and((
float(b4)/b6)gt1.37)and((float(b5)/b6)gt1.089)and((float(b7)/
b6)ge1.02)))

Band ratio thermal infrared (TIR) data

ASTER On-Demand L2 Surface Emissivity (AST_05) 
data of the same ASTER dataset were downloaded from the 
Eros Data Center.  The 90 m data were resampled to 15-m 
pixel dimensions.  Quartz has a strong restrahlen absorption 
feature at 8.65 µm.  A band ratio of ASTER band 13 divided 
by band 12 was used to define the restrahlen feature. Potas-
sium feldspars have absorption features at 9.5 µm and a 13/12 
band ratio should help map these minerals. 

Alteration mapping using the spectral feature fitting 
algorithm

HyMap and SEBASS data were processed using the 
same methodology after the data were converted to apparent 
reflectance or apparent emissivity, respectively. The HyMap 
data were subset from 2.0-2.45 µm and the SEBASS data 
were subset from 8.0-12.0 µm prior to spectral feature analy-
sis using Spectral Feature Fitting™ algorithm implemented in 
ENVI. This algorithm produces “scale” and “RMS” images 
using a least-squares fit and a gray-scale “fit” image that is 
a ratio of “Scale” to “RMS” images. False-color-composite 
images were created for interpretation by placing a mineral fit 
image in the R, G, and B color space. These same fit images 
can be classified using a statistical threshold of at least 2σ as 
accurate mapping of the selected signature using the “fit” im-
age (Riley and others, 2007).

Library signatures for mineral mapping

There are numerous mineral libraries available for inter-
pretations, including the Johns Hopkins University Spectral 
Library (Salisbury and others, 1991), Arizona State Univer-
sity Thermal Emission Spectral Library (Christensen and oth-
ers, 2000), NASA Jet Propulsion Laboratory ASTER Spectral 
Library (NASA, 2000), and the USGS spectral library (Clark 
and others, 2007). Signatures with no absorption features 
such as quartz in the VIS–SWIR were not processed using the 
spectral feature fitting algorithm. The USGS mineral libraries 
were selected for mapping. 

DISCUSSION

ASTER data

The ASTER band 4,5,6 false-color-composite image 
shows some areas of potential alteration (Figs. 4 and 5) as-
sociated with the porphyry copper deposits. Most of this al-
teration is in the Buckskin Range except for the alteration 
near the Blue Hill and the MacArthur pit in the Yerington 
district. Distribution of argillic, phyllic, and silicic alteration 
using ASTER is shown in Figure 6. There is some phyllic 
alteration in the vicinity of the Ann Mason porphyry deposit. 
Argillic alteration as mapped with the logical operators is 
primarily located in the Buckskin Range. These coherent 
patterns of alteration, especially phyllic alteration, provide 
areas of interest for future spectral analysis with hyperspec-
tral imagery. Many of the areas mapped as containing po-
tassic alteration were missed using the argillic, phyllic, and 
silicic ratios algorithms. 

HyMap data

Propylitic alteration was estimated by using a false-
color-composite, spectral-feature-fit image that estimated the 
presence of epidote, chlorite, and calcite. The spectral anoma-
lies of that image set indicate a wide area of alteration (Fig. 
7). This alteration anomaly is a white area that has been geo-
chemically mapped by Dilles and others (2000) as actinolite 
alteration with moderate abundances of chlorite and epidote. 
The southwestern part of the white area is dominated by cal-
cite and altered limestones. Rocks in the dark area south of the 
propylitic alteration are rocks that have not been extensively 
altered by hydrothermal fluids.

Argillic alteration was estimated by means of a false-
color-composite image using chlorite and alunite spectral sig-
natures; the image does not have any areas of white that would 
indicate the comparative abundance of kaolinite, chlorite, and 
alunite, the presence of which are interpreted as indicating ar-
gillic alteration (Fig. 8). The magenta area is a combination of 
kaolinite and alunite, and the green area is chlorite dominated. 
Several blue-toned areas indicate that alunite is the only sig-
nificant alteration mineral present there. This image shows 
that there is no extensive argillic alteration in the vicinity of 
the area known porphyry copper deposits.

The mineral assemblage of kaolinite, muscovite, and il-
lite is represented as a few white areas in a false-color-com-
posite image that displays probable areas of phyllic alteration 
(Fig. 9). These minerals could be the result of weathering pro-
cesses of these volcanic and sedimentary rocks. The rocks in 
the big, coherent pattern in the southern portion of the image 
are comparatively unaltered.

Figure 10 shows a false-color-composite image repre-
senting biotite, muscovite, and illite. The coherent, white pat-
tern in the southern part of the figure indicates the assemblage 
of those three minerals, and the white area is nearly identical 
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Figure 4. Overview ASTER false-color composite image (4,5,6) of the Yerington District, Nevada and the surrounding region.

to the area seen in Figure 9. The volcanic and sedimentary 
rocks in that area contain some biotite. Both Figures 9 and 10, 
conversely, contain muscovite and illite; most of the minerals 
that are part of potassic alteration do not contain absorption 
features in the VNIR-SWIR.

SEBASS data

SEBASS data were converted to apparent emissivity 
and used to produce coherent patterns for each mineral spec-
trum (Figs. 11-14) derived from the library spectra (Fig. 3) 
and a spectral feature fitting algorithm. Propylitic, argillic, and 
phyllic classes are the combined spectral responses of miner-
als that were mapped separately. These results show a general 

distribution of these minerals throughout the scene.
The false-color-composite image showing propylitic al-

teration minerals (Fig. 11) has a few white areas that represent 
the mineral assemblage of albite, epidote, and chlorite. More-
over, these white areas are near the Ann Mason porphyry cop-
per deposit. There are several light-cyan areas that indicate the 
relative abundance of chlorite and albite, and those areas have a 
spatial coherence similar to the units in the underlying geology 
map of Proffett and Dilles (1984). The red areas especially in the 
southern part are epidote rich and associated with the skarn-rich 
area. 

The false-color-composite image showing argillic al-
teration minerals (Fig. 12) has fewer white areas (showing the 
abundance of the mineral suite chlorite, kaolinite, and mont-
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Figure 5. ASTER false-color-composite image (bands 4,5,6) of the Yerington district, Nevada.

morillonite) than those seen in the propylitic alteration image. 
Most of the areas are light pink and suggest a dominance of 
chlorite with lesser amounts of kaolinite and montmorillonite. 
This shows that chlorite is still present in areas that may be 
associated with argillic alteration. These images also show a 
spatial coherence with the underlying geologic map. The dark 
area in the southern part of the image has been mapped as an-
dradite and diopside skarn alteration (Einaudi, 2000).

The phyllic alteration image (Fig. 13) showing the min-
eral suite quartz, muscovite, and chlorite does not have many 
white areas; white would indicate relatively large concentra-
tions of muscovite, chlorite, and quartz. However, there is 
an extensive area of yellow suggesting that muscovite and 
chlorite are present. There are also several areas that are light 
magenta, indicating relatively higher abundance of muscovite 
and quartz, near the potassic alteration area mapped by Dilles 
and others (2000).

Potassic alteration is represented in a false-color-com-
posite image that represents orthoclase, biotite, and quartz 
(Fig. 14). Several magenta and light red areas are present in 
the area of potassic alteration by Dilles and others (2000). 
Magenta, here, indicates the relative presence of orthoclase 
with quartz, and red indicates the relative abundance of ortho-
clase. At the time of of this image analysis the adularia (low 
temperature) potassium feldspar spectrum was not available. 
The yellow areas (Fig. 14) are relatively orthoclase and biotite 
rich and correlate with the granitic plutonic rocks.

CONCLUSION

Mineral mapping with the logical operator algorithms 
mapped the alteration in the Buckskin Range. These logical 
operators and silica band ratio did not delineate potassic al-
teration or the actinolite rich alteration that is common in the 
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Figure 6. Argillic-phyllic-silica alteration image using logical operators for argillic (green) and phyllic (red) alteration and a 
band ratio for silica alteration (yellow) in the Yerington district, Nevada.

Yerington district. This mineral mapping with the multispec-
tral satellite data shows the limits of these data in being able 
to map mineral alteration associated with potassic and silica 
alteration.

HyMap data false color composites show that these data 
can map minerals like kaolinite and alunite but are problemat-
ic for separating chlorite, epidote, calcite, and actinolite. The 
false-color-composite images of mineral-classification layers 
allow differentiation of multiple minerals for the same pixel. 
Determining hydrothermal mineral exploration vectors and 
accurate quantification using chlorite, epidote, calcite, and ac-
tinolite signatures is difficult because their absorption features 
overlap in the SWIR.

SEBASS data allow the discrimination of minerals as-
sociated with propylitic, argillic, phyllic, and potassic hydro-
thermal alteration. These results show that hyperspectral air-

borne emissivity data collected in the 7.5-13.5 μm wavelength 
region can delineate minerals that are associated with porphy-
ry copper deposits. This analysis of minerals associated with 
propylitic, argillic, phyllic, or potassic alteration provides in-
formation about the distribution of these minerals which char-
acterizes the porphyry copper hydrothermal alteration.
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Figure 7. Propylitic mineral alteration false-color-composite image using the “Fit” images processed with the Spectral Fea-
ture Fitting algorithm for the minerals epidote (R), chlorite (G), and calcite (B).

Figure 8. Argillic mineral alteration false-color-composite image using the “Fit” images processed with the Spectral Feature 
Fitting algorithm for the minerals kaolinite (R), chlorite (G), and alunite (B).
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Figure 9. Phyllic mineral alteration false-color-composite image using the “Fit” images processed with the Spectral Feature 
Fitting algorithm for the minerals kaolinite (R), muscovite (G), and illite (B).

Figure 10. Potassic mineral alteration false-color-composite image using the “Fit” images processed with the Spectral Fea-
ture Fitting algorithm for the minerals biotite (R), muscovite (G), and illite (B).
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Figure 11. False-color-composite image using epidote (R), chlorite (G), and albite (B) “Fit” images 
processed with the Spectral Feature Fitting algorithm using SEBASS data. Areas in white have high 
concentrations of epidote, chlorite, and albite.

Figure 12. False-color-composite image using chlorite (R), kaolinite (G), and montmorillonite (B) 
“Fit” images processed with the Spectral Feature Fitting algorithm using SEBASS data. Areas in 
white have high concentrations of chlorite, kaolinite, and montmorillonite.
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Figure 13. False-color-composite image using muscovite (R), chlorite (G), and quartz (B) “Fit” im-
ages processed with the Spectral Feature Fitting algorithm using SEBASS data. Areas in white have 
high concentrations of muscovite, chlorite, and quartz.

Figure 14. False-color-composite image using orthoclase (R), biotite (G), and quartz (B) “Fit” images 
processed with the Spectral Feature Fitting algorithm using SEBASS data. Areas in white have high 
concentrations of orthoclase, biotite, and quartz.




