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ABSTRACT

The Blue Mountains Province (BMP) of northeastern Oregon contains Paleozoic-
Mesozoic sedimentary and volcanic rocks that formed in a complex convergent-margin 
setting and later were accreted to the western margin of North America. In this paper 
we describe a new tectonic model for the BMP that includes: (1) Late Triassic to Early 
Jurassic Molucca Sea-style collision between the Wallowa and Olds Ferry magmatic 
arcs, and (2) Early to Late Jurassic collision of previously amalgamated terranes with 
the North American continent (Papua New Guinea-style terrane-continent collision). 
This is a significant departure from previous models that interpreted the BMP as the 
site of non-collisional east-dipping subduction of oceanic crust beneath a west-facing 
magmatic arc from Late Triassic through Late Jurassic time. Our reinterpretation is 
based on a synthesis of prior studies that reveals critical provenance links and time-
space patterns of deposition and basin migration that were not previously recognized. 
Comparison of stratigraphic relationships in the BMP with the complex mosaic of active 
convergent margins in present-day Southeast Asia provides useful insights into plate 
interactions that may have driven regional crustal deformation and basin evolution in 
western North America during Triassic and Jurassic time.

INTRODUCTION

Accreted terranes of the Blue Mountains Province 
(BMP) in northeastern Oregon preserve a record of Mesozoic 
magmatism, basin formation, sedimentation, and crustal defor-
mation. The BMP is located between similar-age terranes in 
British Columbia to the north and the Klamath Mountains and 
northwestern Nevada to the south, and thus contains useful 
information about Mesozoic crustal evolution of the western 
North America Cordillera. Our work in the Blue Mountains is 
focused on stratigraphic and provenance analysis of Triassic 
and Jurassic sedimentary rocks, and development of new mod-
els for the tectonic evolution of Oregon and adjacent areas of 
the western U.S. Cordillera. According to most existing mod-
els for eastern Oregon, a thick succession of Triassic-Jurassic 
marine sedimentary rocks – commonly known as the Izee ter-
rane – accumulated in a long-lived forearc basin between a 
non-collisional east-dipping subduction zone in the west and 
a west-facing magmatic arc in the east (e.g., Dickinson and 

Thayer, 1978; Dickinson, 1979, 2004; Brooks and Vallier, 
1978; Vallier, 1995). Based on a synthesis of prior studies, we 
suggest that the Blue Mountains region was instead the site of 
protracted arc-arc and terrane-continent collision from Late 
Triassic to Late Jurassic time. This interpretation employs 
the reconstruction of Wyld and Wright (2001), which restores 
northeast Oregon to the latitude of northwest Nevada prior to 
Cretaceous time. In this paper we illustrate and summarize key 
aspects and regional implications of our new tectonic model, 
which is presented in more detail by Dorsey and LaMaskin 
(2007). 

Geologic and Stratigraphic Overview

Rocks of the Blue Mountains Province (BMP) are tra-
ditionally divided into four terranes (Fig. 1): (1) Middle to 
Late Triassic volcanic rocks of the Olds Ferry terrane, which 
is correlated to the Quesnel terrane in British Columbia and 
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Figure 1. Simplified geologic of the Blue Mountains Province showing pre-Cenozoic geology, modified from 
Dorsey and LaMaskin (2007). White areas represent Cenozoic rocks and deposits. BC, Baker City; BMB, Bald 
Mountain batholith; H, Huntington; IB, Idaho Batholith; IM, Ironside Mountain; JM, Juniper Mountain; O, 
Oxbow; PL, Pittsburg Landing; CM, Cuddy Mountains; CH, Coon Hollow;  SDM, Seven Devils Mountains; 
SRB, Salmon River belt; WM, Wallowa Mountains and Wallowa batholith; WISZ, Western Idaho Shear Zone.

the Cordilleran fringing-arc system in western Nevada and 
eastern California (Oldow et al., 1989; Wyld and Wright, 2001; 
Gray and Oldow, 2005); (2) the Baker terrane, a wide belt 
of sheared Permian to Early Jurassic argillite and chert, olis-
tostromal blocks of Devonian to Triassic limestone, serpen-
tinized forearc and oceanic crustal fragments, mafic to ultra-
mafic igneous rocks, and locally developed blueschist facies 
that were deformed in a long-lived subduction zone accre-
tionary complex (Bishop, 1995a; 1995b; Ferns and Brooks, 
1995; Vallier, 1995); (3) Permian to early Jurassic volcanic 
and sedimentary rocks of the Wallowa terrane, which record 
evolution of an intraoceanic island arc system and change 
to clastic input from the Baker terrane (Vallier, 1977, 1995; 
Follo, 1986, 1992, 1994); and (4) the Izee terrane, a thick suc-
cession of Triassic and Jurassic sedimentary rocks that locally 
rest in depositional contact on older rocks of the other 3 ter-
ranes (Dickinson and Thayer, 1978; Brooks and Vallier, 1978; 
Dickinson, 1979). When corrected for post-Jurassic clockwise 
rotation, terranes of the BMP restore to an approximately N-
S orientation (Wilson and Cox, 1980; Hillhouse et al., 1982; 
Oldow et al., 1984, 1989; Housen, 2007).

Figure 2 is a simplified time-stratigraphic diagram, 

constructed from data in Dorsey and LaMaskin (2007), for 
Triassic and Jurassic deposits of the BMP. We divide volcanic 
and sedimentary rocks into two unconformity-bounded mes-
gasequences (Fig. 2): (1) MS-1, Late Triassic to Early Jurassic 
strata, which change up-section from (1a) volcanic and vol-
caniclastic rocks to (1b) marine argillite and turbidites with 
chert-bearing conglomerate and olistostromes derived from 
the Baker terrane; and (2) MS-2, Early to Late Jurassic marine 
deposits that overlie older rocks along a major angular uncon-
formity and record ~20-40 m.y. of deep subsidence in a large 
marine basin. Megasequences are regional-scale stratal units 
that accumulate during a distinct phase of basin evolution, and 
are bounded by unconformities that mark a change in basin-
controlling processes (Phinney et al., 1999; Burton-Ferguson 
et al., 2005; Krézsek and Bally, 2006). Regional stratigraphic 
subdivisions of this type provide a useful tool for interpreting 
genetically related stratal packages and their bounding uncon-
formities.

A distinguishing characteristic of Megasequence 1 is 
the presence of chert clast-bearing sandstone and conglomer-
ate in Late Triassic marine deposits of the southern Wallowa 
Mountains and Izee area (Figs. 1, 3). In the southern Wallowa 
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Figure 2. Simplified chronostratigraphy of Triassic and Jurassic 
rocks in the Blue Mountains, based on compilation of previous 
studies (references in Dorsey and LaMaskin, 2007). MS-1, megas-
equence 1; MS-2, megasequence 2.

Figure 3. Chronostratigraphic diagram for volcanic and sedimentary rocks of megasequence 1, based on compilation of previous studies 
(references in Dorsey and LaMaskin, 2007).  Patterns represent same lithologies as in Figure 1, or as indicated here.

Mountains, MS-1 changes up section from Ladinian to 
Carnian volcanic and volcaniclastic rocks (Wild Sheep Creek 
and Doyle Creek formations), through the Norian Martin 
Bridge Limestone, to Norian – Early Jurassic marine shale 
and fine-grained turbidites (Hurwal Formation) with inter-
bedded conglomerate that contains rounded clasts of chert, 
marble, and plutonic and metamorphic rocks derived from the 
Baker terrane (Figs. 3, 4; Follo, 1986, 1992, 1994). In the Izee 
area, MS-1 includes Late Triassic marine argillite, turbidites, 
chert-clast sandstone and conglomerate, and submarine brec-
cias and olistostromes of the Vester and Fields Creek forma-
tions, which accumulated in tectonically active sub-basins 
during thrusting, uplift and erosion in the nearby Baker ter-
rane (Dickinson and Thayer, 1978; Dickinson, 1979).  

Jurassic deposits of megasequence 2 make up a region-
ally extensive overlap assemblage that displays a time-
transgressive up-section change from fluvial and shallow-
marine deposits, through deep marine mudstone and flysch, 
to upward-coarsening sandy turbidites that contain volca-
nic, metavolcanic, metasedimentary and cherty petrofacies 
(Fig. 5; Dickinson and Thayer, 1978; Dickinson et al., 1979; 
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Figure 4. Photographs of megasequence 1 rocks in the southern Wallowa Mts. A. Volcanic breccia of the Wild Sheep Creek Formation (local 
name is Gold Creek Greenstone). B. Graded fine-grained turbidites of the Doyle Creek Formation. C. Well-bedded carbonate turbidites in 
the basinal facies of the Martin Bridge Limestone. D. Close-up of crinoid debris and other shallow marine faunas in platform facies of the 
Martin Bridge Limestone. E. Shale, argillite and thin-bedded turbidites of the Hurwal Formation. F. Submarine conglomerate in Excelsior 
Gulch Conglomerate of the Hurwal Formation. Ages of units shown in Figure 3.

Figure 5. Chronostratigraphic diagram for megasequence 2 deposits, based on compilation of previous studies (references in Dorsey and 
LaMaskin, 2007). Patterns represent same lithologies as in Figure 1, or as indicated here.
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Figure 6. Photographs of mega-
sequence 2 deposits in the Izee-
Suplee area. A. Shallow marine 
sandstone of Suplee Formation 
(lower unit of Mowich Group), 
inset shows close-up of articu-
lated brachiopods. B. Thin-bed-
ded turbidites of the Snowshoe 
Formation. C. Sediment- 
starved marine clay-shale of 
the Trowbridge Formation. D. 
Thick-bedded sandy turbidites 
in the Lonesome Formation. 
Ages of units shown in Figure 
5.

Goldstrand, 1987, 1994). This succession is well displayed 
in the Izee area (Fig. 6), where MS-2 is about 5 km thick and 
shows an up-section change to NW-directed paleocurrents in 
the upper sandy turbidites (Lonesome Formation) (Dickinson 
and Thayer, 1978). In the Coon Hollow area along the Snake 
River, upper turbiditic sandstone and pebble conglomerate of 
MS-2 contain abundant chert and metasedimentary clasts, with 
paleocurrents that indicate input from an orogenic highland to 
the southeast (Goldstrand, 1987, 1994). The large thickness of 
MS-2 deposits provides evidence for deep subsidence of pre-
viously eroded and deformed older terranes beneath a region-
ally extensive marine basin. 

NEW TECTONIC MODEL FOR THE BLUE 
MOUNTAINS PROVINCE 

Based on a compilation of existing data, we propose a 
new tectonic model for the BMP that includes: (1) Middle 
Triassic subduction and related magmatism in the Wallowa 
and Olds Ferry arcs; (2) Late Triassic collision (amalgama-
tion) between facing accretionary wedges of the two arcs, 
and growth of flexural basins on opposite flanks of a doubly-
vergent Baker terrane thrust belt; (3) Early to Late Jurassic 
growth of a large marine basin due to thrust loading in the 
Cordilleran thrust belt to the east, during protracted collision 
between the amalgamated BMP terranes and western North 
America; and (4) Latest Jurassic thrusting, tectonic burial, 
and metamorphism of the Jurassic basinal rocks during final 
accretion of the BMP terranes to North America (Dorsey and 
LaMaskin, 2007). This model employs the reconstruction of 
Wyld and Wright (2001), in which the BMP was located out-

board of NW Nevada during Triassic and Jurassic time, and 
later was translated northward into its present position by off-
set on Cretaceous dextral strike-slip faults. Below we describe 
and illustrate the two main collisional stages (2 and 3, above) 
with comparison to modern analogs.  

Late Triassic arc-arc collision (MS-1).  Stratigraphic 
data summarized above provide a record of Middle Triassic 
subduction-related volcanism in the Wallowa and Olds Ferry 
arcs (MS-1a), followed by Late Triassic to Early Jurassic 
growth of a large thrust belt in the Baker terrane and deposition 
of turbidites and chert clast-bearing conglomerate in marine 
basins on opposite flanks of the thrust belt (MS-1b) (Fig. 3). 
Syn-tectonic deposits accumulated on crust of the Wallowa 
arc on the north side of the thrust belt (west side in restored 
coordinates) and the Olds Ferry arc on the south side (east side 
in restored coordinates). These relationships provide evidence 
for collision of the facing accretionary wedges of the Wallowa 
and Olds Ferry arcs, similar to modern arc-arc collision in the 
Molucca Sea (Fig. 7; Silver and Smith, 1983; Hamilton, 1988; 
Hall, 2000; Lallemand et al., 2001). It is important to note that 
arc-arc collision necessarily begins in the facing accretionary 
wedges, and the resulting crustal deformation is predicted to 
include significant crustal thickening and horizontal shortening 
of the forearc regions. We suggest that the Late Triassic Baker 
terrane thrust belt was thicker and larger than the doubly-ver-
gent thrust belt seen in the present-day Molucca Sea, and that 
the large crustal thickness resulted in significant uplift, ero-
sion, and delivery of coarse clastic sediments into the flanking 
marine basins (Fig. 7; Dorsey and LaMaskin, 2007).  

Jurassic terrane-continent collision (MS-2).  The 
change to megasequence 2 requires a major change in geom-
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Figure 7. Interpretive diagram showing interpre-
tation of doubly-vergent thrust belt produced by 
Late Triassic to Early Jurassic arc-arc collision in 
the Blue Mountains, based on analogy to the mod-
ern Molucca Sea (modified from Hall, 2000).

etry, tectonic setting, and subsidence mechanism in the Blue 
Mountains. Any tectonic model for the Jurassic must explain: 
(1) overlap of MS-2 deposits onto previously amalgamated 
and deformed rocks of the Wallowa, Baker, and Olds Ferry 
terranes; (2) at least 5 km of crustal subsidence in the Jurassic 
marine basin; and (3) systematic westward migration (in 
restored coordinates) of sedimentary facies that record trans-
gression and deepening followed by progradation of easterly 
derived low-grade metamorphic detritus (Fig. 5). Restoring 
the BMP to the latitude of NW Nevada (Wyld and Wright, 
2001), these relationships can be explained by growth of a 
large marine basin in front of an advancing thrust load dur-
ing protracted collision of the amalgamated terranes with the 
western margin of North America. We therefore infer that 
Jurassic strata accumulated in a large collisional basin that 
migrated to the west in response to crustal loading and con-
vergence in the western part of a doubly-vergent thrust belt 
located to the east (Fig. 8; Dorsey and LaMaskin, 2007). This 
is consistent with evidence for a large orogenic mountain belt 
in Nevada (Cordilleran thrust belt) that drove eastward migra-
tion of the Utah-Idaho Trough foreland basin during Jurassic 
time (Oldow, 1984; Jordan, 1985; Bjerrum and Dorsey, 1995; 
Allen et al., 2000; Wyld, 2002; Wyld et al., 2003). 

We suggest that Jurassic terrane-continent collision in 
western North America produced a major phase of crustal 
shortening in the Cordilleran thrust belt that preceded and 
was unrelated to the Cretaceous phase, which took place at 
an Andean-type convergent margin. The Jurassic episode 

Figure 8. Proposed model for Jurassic terrane-continent collision in the northwestern U.S. Cordillera, based on analogy to the Cenozoic 
Alpine system (Coward and Dietrich, 1989). Using the pre-Cretaceous reconstruction of Wyld and Wright (2001), we restore NE Oregon to 
the latitude of NW Nevada during Jurassic time.

was similar in many respects to terrane-continent collision 
that is presently taking place in Papua New Guinea (Fig 9a; 
Cooper and Taylor, 1987; Pigram and Davies, 1987; Pigram 
and Symonds, 1991; Abbott et al., 1994; Abbott, 1995; Cloos 
et al., 2005). Using this analogy we can correlate three main 
tectonic elements: (1) the modern Papuan foredeep, which is 
formed by flexural subsidence on continental crust of north-
ern Australia, provides a modern analog for the Jurassic Utah-
Idaho Trough foreland basin; (2) the modern PNG highlands 
thrust belt is analogous to the Jurassic Cordilleran thrust belt; 
and (3) the marine basin north of Papua New Guinea today is 
similar to the marine collisional basin that formed in eastern 
Oregon during Jurassic time (Fig. 9b). The Jurassic setting 
of western North America was somewhat different because it 
involved collision of oceanic terranes with a continent-fring-
ing magmatic arc and backarc basin, rather than a passive 
continental margin as seen in present-day PNG. However, 
the driving processes of collisional tectonics, doubly-vergent 
mountain building, crustal loading, and resultant formation of 
flanking flexural foredeep basins, are the same. 

CONCLUSIONS

A synthesis of existing stratigraphic data from Triassic 
and Jurassic rocks in NE Oregon provides evidence for a his-
tory of protracted, multi-stage collisional tectonics that has not 
been recognized in previous studies. The two main stages of 
this history are: (1) Late Triassic to Early Jurassic collision of 
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Figure 9. Possible modern analog for Jurassic terrane-continent collision. A. 
Map of Papua New Guinea, site of Cenozoic to modern terrane-continent colli-
sion (e.g. Pigram and Davies, 1987; Cloos et al., 2005). B. Map in A flipped and 
rotated for comparison with western U.S. Cordillera.

the facing accretionary wedges of the Wallowa and Olds Ferry 
magmatic arcs, growth of a large doubly-vergent thrust belt in 
the Baker terrane, and related evolution of marine basins on 
both the west and east flanks (in restored coordinates) of the 
thrust belt (Fig. 7); and (2) Jurassic collision of the amalgam-
ated terranes with the western margin of North America, and 
growth of a large foredeep basin in the Blue Mountains that 
migrated to the west in response to crustal thickening, load-
ing, and advance of the Cordilleran thrust belt in Nevada (Fig. 
8). We have identified modern analogs for both collisional 
stages, in the Molucca Sea (arc-arc collision) and Papua New 
Guinea (terrane-continent collision). We therefore suggest 
that collisional tectonics may have played a significant role 
in lithospheric processes that drove mountain building and 
basin evolution in the northwestern U.S. during Late Triassic 
and Jurassic time. The Jurassic collisional margin may have 
changed along strike to the south, to an Andean-type subduc-
tion margin in the southwestern U.S.  This idea needs to be 
tested in future work. 
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